室内定位技术现状和发展趋势

2016-12-01 10:48:43 Alisa

摘要:本文首先概述一些室内定位技术的应用场景,并基于这些应用提出一些相应的系统需求。然后对不同的定位技术及它们的优势和局限做出分析。最后,讨论了室内定位领域的新发展趋势。

    随着更多新型移动设备比如手机、平板电脑、可穿戴设备等,物联网设备的性能飞速增长和基于位置感知的应用的激增,位置感知发挥了越来越重要的作用。在室内和室外的环境下,连续地可靠地提供位置信息可以为用户带来更好的用户体验。室外定位和基于位置的服务已经成熟,基于GPS和地图的位置服务被广泛应用,并成为各种移动设备被使用最多的应用之一。近年来,位置服务的相关技术和产业正向室内发展以提供无所不在的基于位置的服务,其主要推动力是室内位置服务所能带来的巨大的应用和商业潜能。许多公司包括OS提供商、服务提供商,设备和芯片提供商都在竞争这个市场。

  室内位置感知可以支持许多应用场景,并且正在改变移动设备的传统使用模式。举一些应用的例子,用户可以寻找特定的餐馆或在商店里寻找某个商品,从附近商场里的商户得到优惠信息,在办公室里找到同事,在机场或火车站找登机口/站台或其它设施,在博物馆里更有效地了解展品信息和观看展览,医院确定医护人员或医疗设备的位置,消防员在起火大厦里的定位等等。想像这样的场景,当我们到会议室开会,手机会自动开启静音模式,我们逛商场看到一件感兴趣的商品可是还在犹豫时,拍下照片并自动给照片打上位置标签, 等下次决定要买时手机帮我们导航到该商品的位置。这些都会给我们日常的生活和工作,以及在紧急情况下带来方便。

  室内定位面临很多独特的挑战, 比如说室内的环境动态性很强可以说是多种多样,不同的大厦会有不同的室内布局;室内的环境更加精细,由此也需要更高的精度来分辨不同的特征。 室内环境的这些独特特征使得现有的很多解决方案是对特定的环境和应用有针对性的解决方案,如果移植到其他环境和应用会受到不同的局限。 那么实用的室内定位解决方案都需要满足那些要求呢?主要包括以下几个方面:精度、覆盖范围、可靠性、成本、功耗、可扩展性和响应时间。

  精度:对精度的要求不同的应用差别很大,比如在超市或仓库找一个特定的商品可能需要1米甚至更低的精度,如果在购物中心寻找一个特定的品牌或餐馆,5-10米的精度就能满足要求。

  覆盖范围:覆盖范围主要是指一个技术和解决方案可以在多大的范围内提供满足精度的覆盖。有些技术需要相应或专用的基础设施支撑并结合相应的定位终端使用,这样它的覆盖就只是布局了相应技术的环境范围。

  可靠性:前面提到室内环境动态性很强,会经常发生改变,比如商场的设置和隔断会经常发生变化。另一方面,定位所依赖的基础设施也会经常发生变化。举个例子,一些大型的会议,参展商会架设自己的WiFi 热点, 这些设施会动态变化位置,甚至有时开有时关,如果定位技术是基于WiFi的,可靠的系统应该不会受到这些因素的影响。

  成本和复杂度:成本和复杂度指标涵盖两个方面。一个是定位终端的成本,是不是可以用终端已有的硬件而不添加新的硬件。另一方面是布局和维护的成本及其复杂度,包括布局与维护定位所需要的设施和采集相关的数据库。

  功耗:定位所产生的功耗是一个很重要的指标尤其对使用电池的移动设备,如果功耗大很快使设备没电了,就限制了用户的使用。有调查表明,电池消耗过快是很多用户不开启定位功能的一个主要因素。所以,如果要实现随时随地的位置感知,必须降低定位所增加的设备额外功耗。

  可扩展性:可扩展性指一个解觉方案扩展到更大的覆盖范围使用的能力,和方便地移植到不同的环境和应用的能力。

  响应时间:系统给出一个位置更新所需的时间是响应时间,不同的应用需求不同,比如移动用户和导航应用需要快的位置更新。

  综合前面阐述的需求,可以总结出以下室内定位技术所面临的挑战,如果室内定位技术要广泛使用,这些技术挑战需要很好的解决。首先,精度和可靠性,现有的单一定位技术很难满足不同的精度和环境动态特性所带来的可靠性要求。 其次,从提高覆盖的角度,现有的技术基本上都依赖定位数据库,而数据库的产生大多依赖人工的现场勘测,这样带来的布局和维护成本很高。最后一点,从用户体验的角度,要求所采用的定位技术功耗低,不增加额外成本。

  室内定位技术已经有了很多发展,提出了各种解决方案。这些解决方案各存在不同的优势,同时也有各种局限,从而使单一的技术不能满足以上所提出的这些挑战。当前室内定位技术的发展趋势是采取多种技术的融合,以达到充分发挥单一技术的优势,并相互弥补不足,从而满足不同的要求所提出的技术挑战,达到最优的解决方案。接下来会介绍现有的不同定位技术,并分析它们的优势和局限,最后讨论室内定位领域的新发展趋势。

基于WiFi的定位技术:WiFi芯片在各种手机和移动设备上已经普遍应用,而且其基础热点设施的室内覆盖也非常好,很多需要定位的公共场所如机场、商场都有覆盖,所以WiFi用于室内定位成为很自然的选择,很多现有的解决方案都是主要基于WiFi技术。基于WiFi的定位技术主要有三种,第一种是基于接收信号强度的三边测量定位(接收信号强度定位法),这也是现在业界应用最多的技术。接收信号强度定位法是通过信号强度和已知信号衰弱模型来估计参考点与待测点的距离,根据多个参考点距离待测点的距离值画出圆,多个圆的重叠部分就是待测目标的位置。它的优点是布局和维护成本相对低,只需要采集WiFi热点的位置数据库,局限是给出的定位精度低,大概能得到10~20m的精度,有些情况可能更低。第二种是基于接收信号强度的指纹定位。该技术是将测量到的接收信号强度与前期测量的各个参考点的信号强度特性进行比较,选取匹配最好的参考点位置来作为测量目标的位置。现有很多解决方案也是专注在该技术。该技术的优势是定位精度高,可以达到3~5m的精度,缺点是布局和维护的成本较高,系统依赖射频信号强度的指纹数据库,对于大规模的使用,数据库大,产生和维护成本相对较高,也在一定程度上造成可移植性差。第三种是基于信号飞行时间的测量,通过测量无线信号在两个节点之间的往返飞行时间,并用该时间推算节点间的距离,根据多个参考点距离待测点的距离值画出圆,多个圆的重叠部分就是待测目标的位置。 它的优点是精度高,可以达到低过1米的精度,其局限是生态系统还不完备,现有的设备不支持。现有的WiFi定位技术都依赖WiFi热点位置分布数据库或者接收信号强度指纹数据库实现定位,所以WiFi定位大范围在室内应用要解决的主要问题是可靠地产生和动态维护数据库,同时要低复杂度,这样才能在大量的建筑中使用。

UWB定位技术:UWB技术其实也是一门古老的技术,UWB最初的定义是来自于60年代兴起的脉冲通信技术,又称为脉冲无线电(Impulse Radio)技术。与在当今通信系统中广泛采用的载波调制技术不同,这种技术用上升沿和下降沿都很陡的基带脉冲直接通信,所以又称为基带传输(baseband transmission)或无载波(carrierless)技术。脉冲UWB技术的脉冲长度通常在亚纳秒量级,信号带宽经常达数千兆赫兹,比任何现有的无线通信技术(包括以3G为代表的宽带CDMA技术)的带宽都大得多,所以最终在1989年被美国国防部称为超宽带技术。UWB设备的平均发射功率很低,可以与其他无线通信系统安静的共存。同时也有低能耗、低成本、保密性好、抗多径干扰等优点。但同时,脉冲UWB系统频谱利用率较低,不适合高数据率传输。另外,早期脉冲UWB技术的专利多掌握在一些小公司手中。因此,当近几年IntelTIMotorola等大公司开发高速UWB技术时,不约而同的摒弃了脉冲方法,转而对传统的载波调制技术进行改造,使其具有UWB技术的特点。现在在IEEE 802.15.3a工作组中形成了多频带OFDMMB-OFDM)和DS-CDMA两大方案竞争的格局。这两种方案都是在对传统技术进行改进后满足UWB技术的特征的。如此同时,脉冲UWB成为低速WPAN(无线个人网)标准IEEE 802.15.4a的重要候选技术。这个标准旨在提供低速率但覆盖范围较大、具有精确定位功能的近距离无线通信业务。正是由于它物理上的特性使它具有抗多径和抗窄带干扰的良好效果。

基于惯性传感器的辅助定位:惯性传感器如加速度计、陀螺仪、磁场计和压力传感器已经被广泛地应用在手机和平板电脑等移动设备上,它们提供9轴或12轴自由度的运动估算。这些传感器可以估计用户的运动状态,实时地推算用户的运动轨迹及高度信息。根据估算的运动轨迹,系统可以给出目标用户相对初始点或参考点的相对位置。它的优点是在相对短的时间内可以给出准确的相对位置估计,并且位置更新速度快,另外功耗也较低;其缺点是长时间的估算误差大,另外有些系统对用户会提出使用限制,比如设备只能采取特定的指向。基于惯性传感器的辅助定位已经开始被广泛应用。

  地图匹配技术:室内地图技术也需要迅速发展,地图匹配技术可以帮助定位技术提高精度,比如通过地图拓扑结构分析来修正惯性传感器给出的位置推算结果,可以很好地提高惯性传感器位置推算的精度。

  低功耗蓝牙技术:基于低功耗蓝牙的定位技术会变得越来越重要,尤其是对零售领域的应用。 该技术需要布局Beacon网络,每个Beacon创建一个信号区域,定位精度可以做到区域定位,也可以通过RSSI与距离的关系公式计算出设备与Beacon之间的距离,另外还可以利用三边测量定位、指纹算法等增加定位精度。多个Beacons,并且拓扑合理,能达到比较好的室内定位效果。现在的局限是需要布局专用的Beacon设施,其覆盖范围不广,并且很多移动用户不经常开启蓝牙设备。 随着很多大公司的推动,相关技术会有更大的发展和更广泛的应用空间。

  室内定位已经迎来了高速发展的阶段,现在可以看到和预测的趋势可以总结以下几点:

(1)由于芯片方案的成熟和成本下降,近两年来国内研究UWB技术及时定位的人和公司慢慢涌现,能达到30cm甚至10cm的系统定位精度。但是正如前面所说,这么高定位精度,并不是所有应用所需要的,因此也决定了其当前只能用在对确保生命财产有较高要求的行业上,如:化工厂人员定位,矿下人员定位、养老院人员看护、大型仓储货物定位等等,相对Wi-FiiBeacons定位应用于商业领域有很大区隔。区隔的原因除了刚才说到的商业领域很多时候不需要很高的定位精度外,还有一个重要的原因就是UWB定位需要被定位人和物额外佩戴标签(相对于手机等终端是天然的标签而言)。但也不排除,某一天智能穿戴设备中集成UWB芯片,从而使这种高精度定位能有可能被用到生活的方方面面,完成一次意外的逆袭。

  (2)多种技术结合的混合定位方法,以满足各种室内环境和应用场景的需求,并弥补单一技术的局限。越来越多的解决方案已经将9轴或12轴惯性传感器技术和其它技术如基于WiFi的定位技术融合到一起,并且这已经成为趋势。GoogleBroadcomCSR 都提供多种技术融合的混合解决方案。未来会有更多的解决方案是完整的传感器/WiFi/BLE的混合解决方案以满足多种需求。

  (3)室内地图和室内定位数据库会迅速发展,相关技术趋于成熟,以保证快速扩展的能力和定位性能的可靠性与一致性。这里的挑战包括地图和数据库的扩展性,快速有效地产生和维护数据库的技术,比如通过众包的方法。

  (4)基于位置的应用和服务会更多利用附近的感应和发现。相对定位而言,附近的发现会更简单因为它并不需要计算精确位置,而只是发现附近的设备就能提供相应的服务。这种技术对于室内和连续无处不在的定位而言有很大影响,并可以作为很好的补充,尤其是针对精确定位不容易实现的场景。相关的技术有BT/BLELTE DirectWiFi DirectNFC等。

  (5)采用专用的定位引擎来处理定位、运动检测、传感器数据分析、信息融合和地理围栏等。通过用专用的处理器来处理运动,情境和定位,可以降低对应用处理器的唤醒,以优化和降低功耗,达到随时随地都知道所处位置的目标。

  (6)低功耗优化,降低定位功能对移动设备带来的额外功耗以实现随时随地的精准定位。包括使用专用的定位处理引擎以尽量少唤醒应用处理器,结合运动检测和行为模式的检测来降低功耗,通过多种定位技术的融合选择最省电同时满足精度的技术,并关闭或使高功耗的定位技术处于休眠模式,以降低高功耗传感器的使用等。